James boundaries and σ-fragmented selectors

B. Cascales

Universidad de Murcia
Castellón, July 24th, 2007

The co-authors

B. C and M. Muñoz and J. Orihuela, James boundaries and σ-fragmented selectors, Preprint. 2007. Available at http://misuma.um.es/beca
B. C, V. Fonf, J. Orihuela, and S. Troyanski, Boundaries in Asplund spaces, Preprint 2007.
(1) Two problems about boundaries
(2) Some old results about boundaries and compactness
(3) Some new results about boundaries and selectors
(4) Open problems

Boundaries: definitions

Throughout the lecture...

- X is a Banach space equipped with its norm || \|;
- K is a Hausdorff compact and $C(K)$ is equipped with its supremum norm.

Boundaries: definitions

Throughout the lecture...

- X is a Banach space equipped with its norm $\|\|$;
- K is a Hausdorff compact and $C(K)$ is equipped with its supremum norm.
- A subset $B \subset B_{X^{*}}=\left\{x^{*} \in X^{*} ;\left\|x^{*}\right\| \leq 1\right\}$ is a boundary for $B_{X^{*}}$ if for any $x \in X$, there is $x^{*} \in B$ such that $x^{*}(x)=\|x\|$.

Boundaries: definitions

Throughout the lecture...

- X is a Banach space equipped with its norm $\|\|$;
- K is a Hausdorff compact and $C(K)$ is equipped with its supremum norm.
- A subset $B \subset B_{X^{*}}=\left\{x^{*} \in X^{*} ;\left\|x^{*}\right\| \leq 1\right\}$ is a boundary for $B_{X^{*}}$ if for any $x \in X$, there is $x^{*} \in B$ such that $x^{*}(x)=\|x\|$.
- A simple example of boundary is provided by Ext $\left(B_{X^{*}}\right)$ the set of extreme points of $B_{X^{*}}$.

Boundaries: definitions

Throughout the lecture...

- X is a Banach space equipped with its norm $\|\|$;
- K is a Hausdorff compact and $C(K)$ is equipped with its supremum norm.
- A subset $B \subset B_{X^{*}}=\left\{x^{*} \in X^{*} ;\left\|x^{*}\right\| \leq 1\right\}$ is a boundary for $B_{X^{*}}$ if for any $x \in X$, there is $x^{*} \in B$ such that $x^{*}(x)=\|x\|$.
- A simple example of boundary is provided by Ext $\left(B_{X^{*}}\right)$ the set of extreme points of $B_{X^{*}}$.

Two problems regarding boundaries

Problem 1: The boundary problem (Godefroy)...extremal test
Let X Banach space, $B \subset B_{X^{*}}$ boundary and denote by $\tau_{p}(B)$ the topology defined on X by the pointwise convergence on B. Let H be a norm bounded and $\tau_{p}(B)$-compact subset of X.

Is H weakly compact?

Two problems regarding boundaries

Problem 1: The boundary problem (Godefroy)...extremal test

Let X Banach space, $B \subset B_{X^{*}}$ boundary and denote by $\tau_{p}(B)$ the topology defined on X by the pointwise convergence on B. Let H be a norm bounded and $\tau_{p}(B)$-compact subset of X.

Is H weakly compact?

Problem 2: When is a boundary strong?
Let X Banach space, $B \subset B_{X^{*}}$ boundary.
When do we have $B_{X^{*}}=\overline{\operatorname{coB}}^{\| \|}$?

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X *}$ boundary and $H \subset X$ norm bounded.

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X *}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

$$
B_{X^{*}}=\overline{\operatorname{coB}}{ }^{\| \|} \text {? }
$$

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X *}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\| \|}{ }^{\boldsymbol{?}}
$$

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X *}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

$$
B_{X^{*}}=\overline{\operatorname{coB}}{ }^{\|} \|_{\boldsymbol{?}}
$$

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\| \|}{ }^{\boldsymbol{?}}
$$

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X * *}$ boundary;

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\| \|}{ }^{\boldsymbol{?}}
$$

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

```
Is \(H\) weakly compact?
```

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\| \|}{ }^{\boldsymbol{?}}
$$

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

$$
B_{X^{*}}=\overline{\operatorname{coB}}{ }^{\|} \|_{\boldsymbol{?}}
$$

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(6) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?
(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(0) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?
(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(0) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.
(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$
(2) 1981, Rodé, YES: B countable;

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?
(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(6) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$
(2) 1981, Rodé, YES: B countable;
(3) 1987, Namioka, YES: localized version using fragmentability.

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: H $\tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(6) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$
(2) 1981, Rodé, YES: B countable;
(3) 1987, Namioka, YES: localized version using fragmentability.
(4) 1987, Godefroy YES: if B is norm separable.

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?

(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K) *}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(6) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$
(2) 1981, Rodé, YES: B countable;
(3) 1987, Namioka, YES: localized version using fragmentability.
(4) 1987, Godefroy YES: if B is norm separable.
(5) 1987, Godefroy YES: if X is separable and $\ell^{1} \not \subset X$.

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?
(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: H $\tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(6) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$
(2) 1981, Rodé, YES: B countable;
(3) 1987, Namioka, YES: localized version using fragmentability.
(4) 1987, Godefroy YES: if B is norm separable.
(5) 1987, Godefroy YES: if X is separable and $\ell^{1} \not \subset X$.
(6) 1999, Fonf YES: X separ.polyhedral.

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?
(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: $H \tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(6) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$
(2) 1981, Rodé, YES: B countable;
(3) 1987, Namioka, YES: localized version using fragmentability.
(4) 1987, Godefroy YES: if B is norm separable.
(5) 1987, Godefroy YES: if X is separable and $\ell^{1} \not \subset X$.
(6) 1999, Fonf YES: X separ.polyhedral.
(7) 2003, Fonf-Lindenstrauss: alternative proofs.

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^{*}}$ boundary and $H \subset X$ norm bounded.

Is H weakly compact?
(1) 1952, Grothendieck: $X=C(K)$ and $B=\operatorname{Ext}\left(B_{C(K)^{*}}\right)$;
(2) 1963, Rainwater: $B=\operatorname{Ext}\left(B_{X^{*}}\right), H$ $\tau_{p}(B)$-seq.compact;
(3) 1972, James: $B_{X} \subset B_{X^{* *}}$ boundary;
(4) 1972, Simons: H $\tau_{p}(B)$-seq.compact and B arbitrary;
(5) 1974, de Wilde: H convex and B arbitrary;
(6) 1982, Bourgain-Talagrand:
$B=\operatorname{Ext}\left(B_{X^{*}}\right)$, arbitrary H.

$$
B_{X^{*}}=\overline{\operatorname{coB}}^{\|} \|_{\boldsymbol{?}}
$$

(1) 1976, Haydon, YES: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} B_{X^{*}}$
(2) 1981, Rodé, YES: B countable;
(3) 1987, Namioka, YES: localized version using fragmentability.
(4) 1987, Godefroy YES: if B is norm separable.
(5) 1987, Godefroy YES: if X is separable and $\ell^{1} \not \subset X$.
(6) 1999, Fonf YES: X separ.polyhedral.
(7) 2003, Fonf-Lindenstrauss: alternative

Right \Longrightarrow Left. Left is open in full generality. Right isn't always true.

Boundary problem for $C(K)$

G. Godefroy and B. C., 1998

Let K be a compact space and $B \subset B_{C(K)^{*}}$ a boundary. Then a subset H of $C(K)$ is weakly compact if, and only if, it is norm bounded and $\tau_{p}(B)$-compact.

Boundary problem for $C(K)$

G. Godefroy and B. C., 1998

Let K be a compact space and $B \subset B_{C(K)^{*}}$ a boundary. Then a subset H of $C(K)$ is weakly compact if, and only if, it is norm bounded and $\tau_{p}(B)$-compact.
G. Manjabacas, G. Vera and B. C. 1997; R. Shvydkoy and B. C. 2003

Let X be a Banach space such that $\ell^{1}(c) \not \subset X$ and B any boundary for $B_{X^{*}}$. Then a subset H of X is weakly compact if, and only if, it is norm bounded and $\tau_{p}(B)$-compact.

Boundary problem for $C(K)$

G. Godefroy and B. C., 1998

Let K be a compact space and $B \subset B_{C(K)^{*}}$ a boundary. Then a subset H of $C(K)$ is weakly compact if, and only if, it is norm bounded and $\tau_{p}(B)$-compact.

G. Manjabacas, G. Vera and B. C. 1997; R. Shvydkoy and B. C. 2003

Let X be a Banach space such that $\ell^{1}(c) \not \subset X$ and B any boundary for $B_{X^{*}}$. Then a subset H of X is weakly compact if, and only if, it is norm bounded and $\tau_{p}(B)$-compact.

Strong boundaries

Definition
Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x)=\sup \{k(x): k \in K\}$.

Strong boundaries

Definition

Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$

Strong boundaries

Definition

Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x)=\sup \{k(x): k \in K\}$. If K is convex then $K=\overline{\operatorname{coB}}{ }^{\mathrm{w}^{*}}$.

The question?

K is convex, $B \subset K$ boundary, study conditions (X, B or K ?) leading to $K=\overline{\cos }^{\| \|}$.

Strong boundaries

Definition

Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x)=\sup \{k(x): k \in K\}$. If K is convex then $K=\overline{\operatorname{coB}}{ }^{\mathrm{w}^{*}}$.

The question?

K is convex, $B \subset K$ boundary, study conditions (X, B or K ?) leading to $K=\overline{\cos }^{\| \|}$.

What are the techniques that have been used?

Strong boundaries

Definition

Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x)=\sup \{k(x): k \in K\}$. If K is convex then $K=\overline{\operatorname{coB}}^{\boldsymbol{w}^{*}}$.

The question?

K is convex, $B \subset K$ boundary, study conditions (X, B or K ?) leading to $K=\overline{\cos }^{\| \|}$.

What are the techniques that have been used?
(1) 1976, Haydon [Hay76]: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} K$ uses independent sequences (Ramsey theory) $K=\overline{\operatorname{coExt} K}{ }^{\|} \|$.

Strong boundaries

Definition

Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x)=\sup \{k(x): k \in K\}$. If K is convex then $K=\overline{\operatorname{coB}}^{\boldsymbol{w}^{*}}$.

The question?

K is convex, $B \subset K$ boundary, study conditions (X, B or K ?) leading to $K=\overline{\cos }^{\| \|}$.

What are the techniques that have been used?
(1) 1976, Haydon [Hay76]: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} K$ uses independent sequences (Ramsey theory) $K=\overline{\operatorname{coExt} K}{ }^{\|} \|$.
(2) 1987, Namioka [Nam87]: $K \subset X^{*}$ is norm fragmented, then $\overline{\operatorname{coK}}^{\mathrm{w}^{*}}=\overline{\operatorname{coK}}^{\| \|}$, uses the existence of barycenters.

Strong boundaries

Definition

Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x)=\sup \{k(x): k \in K\}$. If K is convex then $K=\overline{\operatorname{coB}}{ }^{\mathrm{w}^{*}}$.

The question?

K is convex, $B \subset K$ boundary, study conditions (X, B or K ?) leading to $K=\overline{\cos }^{\| \|}$.

What are the techniques that have been used?
(1) 1976, Haydon [Hay76]: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} K$ uses independent sequences (Ramsey theory) $K=\overline{\operatorname{coExt} K}{ }^{\|} \|$.
(2) 1987, Namioka [Nam87]: $K \subset X^{*}$ is norm fragmented, then $\overline{\operatorname{coK}}^{\mathrm{w}^{*}}=\overline{\operatorname{coK}}^{\| \|}$, uses the existence of barycenters.
(3) 1987, Godefroy [God87]: if $B \subset K$ is norm separable then $K=\overline{\operatorname{coB}}^{\| \|}$ uses Simons inequality.

Strong boundaries

Definition

Given a Banach space X and a w^{*}-compact subset $K \subset X^{*}$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x)=\sup \{k(x): k \in K\}$. If K is convex then $K=\overline{\operatorname{coB}}{ }^{\boldsymbol{w}^{*}}$.

The question?

K is convex, $B \subset K$ boundary, study conditions (X, B or K ?) leading to $K=\overline{\cos }^{\| \|}$.

What are the techniques that have been used?
(1) 1976, Haydon [Hay76]: $\ell^{1} \not \subset X$ and $B=\operatorname{Ext} K$ uses independent sequences (Ramsey theory) $K=\overline{\operatorname{coExt} K}{ }^{\|} \|$.
(2) 1987, Namioka [Nam87]: $K \subset X^{*}$ is norm fragmented, then $\overline{\operatorname{coK}}^{\mathrm{w}^{*}}=\overline{\operatorname{coK}}^{\| \|}$, uses the existence of barycenters.
(3) 1987, Godefroy [God87]: if $B \subset K$ is norm separable then $K=\overline{\operatorname{coB}}^{\| \|}$ uses Simons inequality.
(4) 1987, Godefroy [God87] using Simons inequality proves that if X is separable and $\ell^{1} \not \subset X$ then $K=\overline{\operatorname{coB}}^{\| \|}$.

Our results

(1) We prove that when B is "descriptive" then $K=\overline{\operatorname{coB}}{ }^{\| \|}$: this extends results by Godefroy, Contreras-Payá and solve a problem asked by Plichko.

Our results

(1) We prove that when B is "descriptive" then $K=\overline{\operatorname{coB}}{ }^{\| \|}$: this extends results by Godefroy, Contreras-Payá and solve a problem asked by Plichko.
(2) We apply the techniques developed to give new characterizations of Asplund spaces.

Our results

(1) We prove that when B is "descriptive" then $K=\overline{\operatorname{coB}}{ }^{\| \|}$: this extends results by Godefroy, Contreras-Payá and solve a problem asked by Plichko.
(2) We apply the techniques developed to give new characterizations of Asplund spaces.
(3) We prove that Fonf-Lindenstrauss techniques can be reduced to the old techniques coming from Simons inequality: there are no new techniques nor can be stronger applications derived from Fonf-Lindenstrauss.

Our results

(1) We prove that when B is "descriptive" then $K=\overline{\operatorname{coB}}{ }^{\| \|}$: this extends results by Godefroy, Contreras-Payá and solve a problem asked by Plichko.
(2) We apply the techniques developed to give new characterizations of Asplund spaces.
(3) We prove that Fonf-Lindenstrauss techniques can be reduced to the old techniques coming from Simons inequality: there are no new techniques nor can be stronger applications derived from Fonf-Lindenstrauss.
4. We characterize Banach spaces X without copies of ℓ^{1} via boundaries extending the results by Godefroy for the separable case.

Our results

(1) We prove that when B is "descriptive" then $K=\overline{\operatorname{coB}}{ }^{\| \|}$: this extends results by Godefroy, Contreras-Payá and solve a problem asked by Plichko.
(2) We apply the techniques developed to give new characterizations of Asplund spaces.
(3) We prove that Fonf-Lindenstrauss techniques can be reduced to the old techniques coming from Simons inequality: there are no new techniques nor can be stronger applications derived from Fonf-Lindenstrauss.
4. We characterize Banach spaces X without copies of ℓ^{1} via boundaries extending the results by Godefroy for the separable case.
(5) For Asplund spaces we characterize boundaries for which $K=\overline{\cos }{ }^{\| \|}$. We extend in several different ways results by Namioka and Fonf.

Our first result: answer to a question by Plichko

Proposition, Muñoz-Orihuela-B.C.

Let X be a Banach space, B a boundary for $B_{X^{*}}, 1>\varepsilon \geq 0$ and $T \subset X^{*}$ such that $B \subset \bigcup_{t \in T} B(t, \varepsilon)$. If ($\left.T, w\right)$ is countably K-determined (resp. K-analytic) then:
(i) $X^{*}=\overline{\operatorname{span} T^{\|} \|}$and X^{*} is weakly countably K-determined (resp. weakly K-analytic).
(ii) Every boundary for $B_{X^{*}}$ is strong. In particular $B_{X^{*}}=\overline{\operatorname{co}(B)}{ }^{\|} \|$.

Our first result: answer to a question by Plichko

Proposition, Muñoz-Orihuela-B.C.

Let X be a Banach space, B a boundary for $B_{X^{*}}, 1>\varepsilon \geq 0$ and $T \subset X^{*}$ such that $B \subset \bigcup_{t \in T} B(t, \varepsilon)$. If (T, w) is countably K-determined (resp. K-analytic) then:
(i) $X^{*}=\overline{\operatorname{span} T}{ }^{\| \|}$and X^{*} is weakly countably K-determined (resp. weakly K-analytic).
(ii) Every boundary for $B_{X^{*}}$ is strong. In particular $B_{X^{*}}=\overline{\operatorname{co}(B)}{ }^{\|} \|$.

This answers a question by Plichko, extends Godefroy's result for separable boundary and improves Contreras-Payá and Fonf-Lindenstrauss result.

2nd result: characterization of Asplund spaces via selectors

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X :
(i) X is an Asplund space;
(ii) J has a Baire one selector;
(iii) J has a σ-fragmented selector;
(iv) for some $0<\varepsilon<1$, J has an ε-selector that sends norm separable subsets of X into norm separable subsets of X^{*}.
(v) there exists $0<\varepsilon<1$ such that ($B_{X^{*}}, w^{*}$) is ε-fragmented, i.e., for every non-empty subset $C \subset B_{X^{*}}$ there exists some w*-open set V in $B_{X^{*}}$ such that $C \cap V \neq \emptyset$ and $\|\|-\operatorname{diam}(C \cap V)<\varepsilon$.

2nd result: characterization of Asplund spaces via selectors

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X :
(i) X is an Asplund space;
(ii) J has a Baire one selector;
(iii) J has a σ-fragmented selector;
(iv) for some $0<\varepsilon<1$, J has an ε-selector that sends norm separable subsets of X into norm separable subsets of X^{*}.
(v) there exists $0<\varepsilon<1$ such that ($B_{X^{*}}, w^{*}$) is ε-fragmented, i.e., for every non-empty subset $C \subset B_{X^{*}}$ there exists some w*-open set V in $B_{X^{*}}$ such that $C \cap V \neq \emptyset$ and $\|\|-\operatorname{diam}(C \cap V)<\varepsilon$.

Duality mapping

If $(X,\| \|)$ is a Banach space the duality mapping $J: X \rightarrow 2^{B_{X^{*}}}$ is defined at each $x \in X$ by

$$
J(x):=\left\{x^{*} \in B_{X^{*}}: x^{*}(x)=\|x\|\right\}
$$

2nd result: characterization of Asplund spaces via selectors

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X :
(i) X is an Asplund space;
(ii) J has a Baire one selector;
(iii) J has a σ-fragmented selector;
(iv) for some $0<\varepsilon<1$, J has an ε-selector that sends norm separable subsets of X into norm separable subsets of X^{*}.
(v) there exists $0<\varepsilon<1$ such that ($B_{X^{*}}, w^{*}$) is ε-fragmented, i.e., for every non-empty subset $C \subset B_{X^{*}}$ there exists some w*-open set V in $B_{X^{*}}$ such that $C \cap V \neq \emptyset$ and $\|\|-\operatorname{diam}(C \cap V)<\varepsilon$.

Notes:

- Borel measurable maps are σ-fragmented.

2nd result: characterization of Asplund spaces via selectors

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X :
(i) X is an Asplund space;
(ii) J has a Baire one selector;
(iii) J has a σ-fragmented selector;
(iv) for some $0<\varepsilon<1$, J has an ε-selector that sends norm separable subsets of X into norm separable subsets of X^{*}.
(v) there exists $0<\varepsilon<1$ such that ($B_{X^{*}}, w^{*}$) is ε-fragmented, i.e., for every non-empty subset $C \subset B_{X^{*}}$ there exists some w*-open set V in $B_{X^{*}}$ such that $C \cap V \neq \emptyset$ and $\|\|-\operatorname{diam}(C \cap V)<\varepsilon$.

Notes:

- Borel measurable maps are σ-fragmented.
- The implication $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is proved in [JR02] with extra hypothesis which are justified with a wrong example.

2nd result: characterization of Asplund spaces via selectors

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X :
(i) X is an Asplund space;
(ii) J has a Baire one selector;
(iii) J has a σ-fragmented selector;
(iv) for some $0<\varepsilon<1$, J has an ε-selector that sends norm separable subsets of X into norm separable subsets of X^{*}.
(v) there exists $0<\varepsilon<1$ such that ($B_{X^{*}}, w^{*}$) is ε-fragmented, i.e., for every non-empty subset $C \subset B_{X^{*}}$ there exists some w*-open set V in $B_{X^{*}}$ such that $C \cap V \neq \emptyset$ and $\|\|-\operatorname{diam}(C \cap V)<\varepsilon$.

Notes:

- Borel measurable maps are σ-fragmented.
- The implication $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is proved in [JR02] with extra hypothesis which are justified with a wrong example.
- The equivalence with (v) is known when we write for every ε : a different proof has been given quite recently by Fabian-Montesinos-Zizler.

Boundaries and the topology γ

γ is the topology on X^{*} of uniform convergence on bounded and countable subsets of X.

Boundaries and the topology γ

γ is the topology on X^{*} of uniform convergence on bounded and countable subsets of X.

Muñoz, Orihuela and B. C.

Let X be a Banach space. The following statement are equivalent:
(i) $\ell^{1} \not \subset X$;
(ii) for every w^{*}-compact subset K of X^{*} and any boundary B of K we have $\overline{\cos (K)}^{w^{*}}=\overline{\cos (B)}^{\gamma}$;
(iii) for every w^{*}-compact subset K of $X^{*}, \overline{\cos (K)}^{w^{*}}=\overline{\operatorname{co}(K)}^{\gamma}$.

Boundaries and the topology γ

γ is the topology on X^{*} of uniform convergence on bounded and countable subsets of X.

Muñoz, Orihuela and B. C.

Let X be a Banach space. The following statement are equivalent:
(i) $\ell^{1} \not \subset X$;
(ii) for every w^{*}-compact subset K of X^{*} and any boundary B of K we have $\overline{\operatorname{co}(K)}^{\mathbf{w}^{*}}=\overline{\operatorname{co}(B)}^{\gamma}$;
(iii) for every w^{*}-compact subset K of $X^{*}, \overline{\operatorname{co}(K)}^{\mathrm{w}^{*}}=\overline{\operatorname{co}(K)}^{\gamma}$.

Fonf, Troyanski, Orihuela and B. C.

Let X be an Asplund space, K a w^{*}-compact convex subset of the dual space X^{*} and $B \subset K$ a boundary of K. Each one of the condition below implies that $K=\overline{\operatorname{coB}}^{\| \|}$:
(i) B is γ-closed.
(ii) B is $w^{*}-K$-analytic.

Boundaries and the topology γ

The techniques now are topological techniques developed by Namioka-Orihuela-B. C and Namioka-B. C.

Muñoz, Orihuela and B. C.

Let X be a Banach space. The following statement are equivalent:
(i) $\ell^{1} \not \subset X$;
(ii) for every w^{*}-compact subset K of X^{*} and any boundary B of K we have $\overline{\operatorname{co}(K)}^{\mathrm{w}^{*}}=\overline{\cos (B)}^{\gamma}$;
(iii) for every w^{*}-compact subset K of $X^{*}, \overline{\operatorname{co}(K)}^{\mathrm{w}^{*}}=\overline{\operatorname{co}(K)}^{\gamma}$.

Fonf, Troyanski, Orihuela and B. C.

Let X be an Asplund space, K a w^{*}-compact convex subset of the dual space X^{*} and $B \subset K$ a boundary of K. Each one of the condition below implies that $K=\overline{\operatorname{coB}}^{\| \|}$:
(i) B is γ-closed.
(ii) B is $w^{*}-K$-analytic.

Two open problems

(1) The boundary problem in full generality (Godefroy).
(2) Characterize strong boundaries out of the setting of Asplund spaces.

References

G. Godefroy, Boundaries of a convex set and interpolation sets, Math. Ann. 277 (1987), no. 2, 173-184. MR 88f:46037R. Haydon, Some more characterizations of Banach spaces containing I I_{1}, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 269-276. MR 54 \#11031

J. E. Jayne and C. A. Rogers, Selectors, Princeton University Press, Princeton, NJ, 2002. MR MR1915965 (2003j:54018)

目
I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), no. 2, 258-281. MR 89i:46021

