James boundaries and σ -fragmented selectors

B. Cascales

Universidad de Murcia

Castellón, July 24th, 2007

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The co-authors

B. C and **M. Muñoz and J. Orihuela**, James boundaries and σ -fragmented selectors, Preprint. 2007. Available at http://misuma.um.es/beca

B. C, V. Fonf, J. Orihuela, and S. Troyanski, *Boundaries in Asplund spaces*, Preprint 2007.

- 1 Two problems about boundaries
- 2 Some old results about boundaries and compactness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 3 Some new results about boundaries and selectors
- Open problems

•00	0	00000	00
Boundaries [,] defi	nitions		

- X is a Banach space equipped with its norm || ||;
- K is a Hausdorff compact and C(K) is equipped with its supremum norm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•00	0	00000	00
Boundaries [,] defi	nitions		

- X is a Banach space equipped with its norm || ||;
- K is a Hausdorff compact and C(K) is equipped with its supremum norm.
- A subset $B \subset B_{X^*} = \{x^* \in X^* ; \|x^*\| \le 1\}$ is a boundary for B_{X^*} if for any $x \in X$, there is $x^* \in B$ such that $x^*(x) = \|x\|$.

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
●00	O	00000	00
Boundaries: defi	nitions		

- X is a Banach space equipped with its norm || ||;
- K is a Hausdorff compact and C(K) is equipped with its supremum norm.
- A subset $B \subset B_{X^*} = \{x^* \in X^* ; \|x^*\| \le 1\}$ is a boundary for B_{X^*} if for any $x \in X$, there is $x^* \in B$ such that $x^*(x) = \|x\|$.
- A simple example of boundary is provided by Ext (*B_X**) the set of extreme points of *B_X**.

•00	0	00000	00
Boundaries: def	initions		

- X is a Banach space equipped with its norm || ||;
- K is a Hausdorff compact and C(K) is equipped with its supremum norm.
- A subset $B \subset B_{X^*} = \{x^* \in X^* ; \|x^*\| \le 1\}$ is a boundary for B_{X^*} if for any $x \in X$, there is $x^* \in B$ such that $x^*(x) = \|x\|$.
- A simple example of boundary is provided by Ext (B_{X^*}) the set of extreme points of B_{X^*} .

2 problems ab	out boundaries	The Boundary problem	Our new results	Open problems+References
0●0		0	00000	00

Two problems regarding boundaries

Problem 1: The boundary problem (Godefroy)...extremal test

Let X Banach space, $B \subset B_{X^*}$ boundary and denote by $\tau_p(B)$ the topology defined on X by the pointwise convergence on B. Let H be a norm bounded and $\tau_p(B)$ -compact subset of X.

Is H weakly compact?

2 problems 0●0	s about boundaries	The Boundary problem 0	Our new results 00000	Open problems+References
		1. 1. 1.		

Two problems regarding boundaries

Problem 1: The boundary problem (Godefroy)...extremal test

Let X Banach space, $B \subset B_{X^*}$ boundary and denote by $\tau_p(B)$ the topology defined on X by the pointwise convergence on B. Let H be a norm bounded and $\tau_p(B)$ -compact subset of X.

Is H weakly compact?

Problem 2: When is a boundary strong?

Let X Banach space, $B \subset B_{X^*}$ boundary.

When do we have $B_{X^*} = \overline{\operatorname{coB}}^{\| \|}$?

(日) (同) (三) (三) (三) (○) (○)

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
00●	O	00000	
Two problems re	garding bounda	aries	

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへぐ

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

$$B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$$

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \operatorname{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: H τ_p(B)-seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- 6 1982, Bourgain-Talagrand: $B = \text{Ext}(B_{X^*})$, arbitrary H.

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- 1982, Bourgain-Talagrand: $B = \text{Ext}(B_{X^*})$, arbitrary H.

1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: H τ_p(B)-seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- 1982, Bourgain-Talagrand: $B = \text{Ext}(B_{X^*})$, arbitrary H.

$$B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$$

- 1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$
- 2 1981, Rodé, YES: *B* countable;

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- **6** 1982, Bourgain-Talagrand: $B = \text{Ext}(B_{X^*})$, arbitrary *H*.

$$B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$$

- 1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$
- 2 1981, Rodé, YES: B countable;
- 1987, Namioka, YES: localized version using fragmentability.

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \operatorname{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- **6** 1982, Bourgain-Talagrand: $B = \text{Ext}(B_{X^*})$, arbitrary *H*.

$$B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$$

- 1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$
- 2 1981, Rodé, YES: B countable;
- 3 1987, Namioka, YES: localized version using fragmentability.
- 1987, Godefroy YES: if *B* is norm separable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \operatorname{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- 1982, Bourgain-Talagrand: $B = \text{Ext}(B_{X^*})$, arbitrary H.

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$
- 2 1981, Rodé, YES: B countable;
- 3 1987, Namioka, YES: localized version using fragmentability.
- 1987, Godefroy YES: if *B* is norm separable.
- I987, Godefroy YES: if X is separable and ℓ¹ ∉ X.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \operatorname{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- 1982, Bourgain-Talagrand: $B = \operatorname{Ext}(B_{X^*})$, arbitrary H.

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$
- 2 1981, Rodé, YES: B countable;
- 3 1987, Namioka, YES: localized version using fragmentability.
- I987, Godefroy YES: if *B* is norm separable.
- I987, Godefroy YES: if X is separable and ℓ¹ ∉ X.
- **1999**, Fonf YES: X separ.polyhedral.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \operatorname{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- 6 1982, Bourgain-Talagrand: $B = \operatorname{Ext}(B_{X^*})$, arbitrary H.

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$
- 2 1981, Rodé, YES: B countable;
- 3 1987, Namioka, YES: localized version using fragmentability.
- I987, Godefroy YES: if *B* is norm separable.
- I987, Godefroy YES: if X is separable and ℓ¹ ∉ X.
- **1999**, Fonf YES: X separ.polyhedral.
- 2003, Fonf-Lindenstrauss: alternative proofs.

The Boundary problem

Our new results

Open problems+References

Two problems regarding boundaries

Let X Banach space, $B \subset B_{X^*}$ boundary and $H \subset X$ norm bounded.

Is *H* weakly compact?

- 1952, Grothendieck: X = C(K) and $B = \text{Ext}(B_{C(K)^*});$
- 2 1963, Rainwater: $B = \text{Ext}(B_{X^*})$, $H \tau_p(B)$ -seq.compact;
- **③** 1972, James: $B_X \subset B_{X^{**}}$ boundary;
- 1972, Simons: $H \tau_p(B)$ -seq.compact and B arbitrary;
- 1974, de Wilde: H convex and B arbitrary;
- **6** 1982, Bourgain-Talagrand: $B = \text{Ext}(B_{X^*})$, arbitrary H.

 $B_{X^*} = \overline{\operatorname{co} B}^{\| \|}?$

- 1976, Haydon, YES: $\ell^1 \not\subset X$ and $B = \operatorname{Ext} B_{X^*}$
- 2 1981, Rodé, YES: B countable;
- 1987, Namioka, YES: localized version using fragmentability.
- I987, Godefroy YES: if *B* is norm separable.
- Solution 1987, Godefroy YES: if X is separable and ℓ¹ ∉ X.
- **1999**, Fonf YES: X separ.polyhedral.
- 2003, Fonf-Lindenstrauss: alternative

Right \implies Left. Left is open in full generality. Right isn't always true.

2 problems about boundaries	The Boundary problem •	Our new results 00000	Open probl
Boundary problem	n for $C(K)$		

G. Godefroy and B. C., 1998

Let K be a compact space and $B \subset B_{C(K)^*}$ a boundary. Then a subset H of C(K) is weakly compact if, and only if, it is norm bounded and $\tau_p(B)$ -compact.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Boundary problem

Our new results

Open problems+References 00

Boundary problem for C(K)

G. Godefroy and B. C., 1998

Let K be a compact space and $B \subset B_{C(K)^*}$ a boundary. Then a subset H of C(K) is weakly compact if, and only if, it is norm bounded and $\tau_p(B)$ -compact.

G. Manjabacas, G. Vera and B. C. 1997; R. Shvydkoy and B. C. 2003

Let X be a Banach space such that $\ell^1(c) \notin X$ and B any boundary for B_{X^*} . Then a subset H of X is weakly compact if, and only if, it is norm bounded and $\tau_p(B)$ -compact.

The Boundary problem

Our new results

Open problems+References 00

Boundary problem for C(K)

G. Godefroy and B. C., 1998

Let K be a compact space and $B \subset B_{C(K)^*}$ a boundary. Then a subset H of C(K) is weakly compact if, and only if, it is norm bounded and $\tau_p(B)$ -compact.

G. Manjabacas, G. Vera and B. C. 1997; R. Shvydkoy and B. C. 2003

Let X be a Banach space such that $\ell^1(c) \notin X$ and B any boundary for B_{X^*} . Then a subset H of X is weakly compact if, and only if, it is norm bounded and $\tau_p(B)$ -compact.

2 problems about boundaries	0 O	Our new results ●○○○○	Open problems+Referenc	es
Strong boundar	ies			
Definition				
Given a Banach sp for K is a subset E such that $b(x) = s$	ace X and a w [*] -compace B of K such that for even $\{k(x) : k \in K\}.$	ct subset $K \subset X^*$, a ry $x \in X$ there exist	James boundary is some $b \in B$	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

000	about boundaries	0	•0000	00
Str	ong boundaries	5		
	Definition			
	Given a Banach space for K is a subset B of such that $b(x) = \sup \{$	X and a w [*] -compact K such that for every $\{k(x) : k \in K\}$. If K is	subset $K \subset X^*$, a Jack $x \in X$ there exists a convex then $K = \overline{co}$	ames boundary some $b \in B$ \overline{B}^{W^*} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

000	o	●○○○○	00
Strong bound	aries		
Definition			
Given a Banach for K is a subse such that $b(x)$	space X and a w [*] -compare at B of K such that for even $= \sup \{k(x) : k \in K\}$. If K	ict subset $K \subset X^*$, ery $x \in X$ there exis is convex then $K =$	a James boundary its some $b \in B$ = $\overline{\operatorname{co} B^{w^*}}$.
The question?			
$K \text{ is convex, } B$ $K = \overline{\operatorname{co} B}^{\parallel \parallel}.$	$\subset K$ boundary, study cond	litions (X, B or K?) leading to

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

bliems about boundaries	O	●0000	00
rong boundarie	es		
Definition			
Given a Banach spa for K is a subset B such that $b(x) = such that b(x) = such that b($	ce X and a w*-compa of K such that for even $p\{k(x): k \in K\}$. If K	ct subset $K \subset X^*$, a ery $x \in X$ there exis is convex then $K =$	a James boundary ts some $b \in B$ = $\overline{\operatorname{co} B^{w^*}}$.
The question?			
$K \text{ is convex, } B \subset K$ $K = \overline{\operatorname{co} B}^{\parallel \parallel}.$	boundary, study cond	itions (X, B or K?)) leading to
What are the techni	ques that have been u	sed?	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

2 prot 000	olems about boundaries	The Boundary problem O	Our new results	Open problems+References	
Str	rong boundaries	5			
	Definition				
	Given a Banach space X and a w [*] -compact subset $K \subset X^*$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x) = \sup \{k(x) : k \in K\}$. If K is convex then $K = \overline{\operatorname{co} B}^{w^*}$.				
	The question?				
	K is convex, $B \subset K$ b $K = \overline{\operatorname{co} B}^{\parallel} \parallel$.	oundary, study condi	tions (X, B or K?)	leading to	
	What are the technique 1976 Haydon [b	ues that have been us $\frac{1}{2} d = \frac{1}{2} d = \frac{1}{2$	sed? 3 — Fxt K uses inde	nendent	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

■ 1976, Haydon [Hay76]: $\ell^1 \not\subset X$ and B = ExtK uses independent sequences (Ramsey theory) $K = \overline{\text{coExt}K}^{\parallel \parallel}$.

2 prob 000	lems about boundaries	The Boundary problem O	Our new results	Open problems+References 00	
Str	ong boundaries	;			
	Definition				
	Given a Banach space X and a w [*] -compact subset $K \subset X^*$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x) = \sup\{k(x) : k \in K\}$. If K is convex then $K = \overline{\operatorname{co} B}^{w^*}$.				
	The question?				
	$K \text{ is convex, } B \subset K \text{ b}$ $K = \overline{\operatorname{co} B}^{\parallel \parallel}.$	oundary, study cond	itions (X, B or K?)	leading to	

What are the techniques that have been used?

I976, Haydon [Hay76]: l¹ ⊄ X and B = Ext K uses independent sequences (Ramsey theory) K = co Ext K^{||}.

2 1987, Namioka [Nam87]: $K \subset X^*$ is norm fragmented, then $\overline{\operatorname{co} K}^{w^*} = \overline{\operatorname{co} K}^{\| \cdot \|}$, uses the existence of barycenters.

2 problems about boundaries 000	The Boundary problem 0	Our new results	Open problems+References			
Strong boundarie	S					
Definition						
Given a Banach space X and a w [*] -compact subset $K \subset X^*$, a James boundary for K is a subset B of K such that for every $x \in X$ there exists some $b \in B$ such that $b(x) = \sup\{k(x) : k \in K\}$. If K is convex then $K = \overline{\operatorname{co}B}^{w^*}$.						
The question?	The question?					
K is convex $B \subset K$	boundary study condi	$(X B \text{ or } K^2)$	leading to			

 $K = \overline{\operatorname{co} B}^{\parallel \parallel}$

What are the techniques that have been used?

- 1976, Haydon [Hay76]: l¹ ∉ X and B = Ext K uses independent sequences (Ramsey theory) K = coExt K^{||} ||.
- **2** 1987, Namioka [Nam87]: $K \subset X^*$ is norm fragmented, then $\overline{\operatorname{co} K}^{w^*} = \overline{\operatorname{co} K}^{\| \|}$, uses the existence of barycenters.
- **3** 1987, Godefroy [God87]: if $B \subset K$ is norm separable then $K = \overline{\operatorname{co} B}^{\| \cdot \|}$ uses *Simons inequality*.

2 prob 000	olems about boundaries	The Boundary problem O	Our new results ●○○○○	Open problems+References 00
Str	rong boundaries	;		
	Definition			
	Given a Banach space for K is a subset B of such that $b(x) = \sup \{$	X and a w*-compact s K such that for every $x \in K$ ($k(x) : k \in K$). If K is c	ubset $K \subset X^*$, a Jack $K \in X$ there exists so onvex then $K = \overline{co}$	$\begin{array}{l} \text{mes boundary} \\ \text{ome } b \in B \\ \overline{B}^{w^*}. \end{array}$
	The question?			

K is convex, $B \subset K$ boundary, study conditions (*X*, *B* or *K*?) leading to $K = \overline{\operatorname{co} B}^{\parallel \parallel}$.

What are the techniques that have been used?

- I1976, Haydon [Hay76]: l¹ ∉ X and B = Ext K uses independent sequences (Ramsey theory) K = coExt K^{||} ||.
- **2** 1987, Namioka [Nam87]: $K \subset X^*$ is norm fragmented, then $\overline{\operatorname{co} K}^{w^*} = \overline{\operatorname{co} K}^{\| \|}$, uses the existence of barycenters.
- **3** 1987, Godefroy [God87]: if $B \subset K$ is norm separable then $K = \overline{\operatorname{co} B}^{\| \|}$ uses *Simons inequality*.
- 1987, Godefroy [God87] using Simons inequality proves that if X is separable and $\ell^1 \not\subset X$ then $K = \overline{\operatorname{co}B}^{\parallel \parallel}$.

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
	O	○●000	00
Our results			

• We prove that when *B* is "descriptive" then $K = \overline{\operatorname{co} B}^{\| \|}$: this extends results by Godefroy, Contreras-Payá and *solve* a problem asked by Plichko.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 problems about boundaries	The Boundary problem O	Our new results ○●000	Open problems+References
Our results			

() We prove that when *B* is "descriptive" then $K = \overline{\operatorname{co} B}^{\| \|}$: this extends results by Godefroy, Contreras-Payá and *solve* a problem asked by Plichko.

We apply the techniques developed to give new characterizations of Asplund spaces.

2 problems about boundaries	The Boundary problem 0	Our new results	Open problems+References 00
Our results			

- **(**) We prove that when *B* is "descriptive" then $K = \overline{\operatorname{co} B}^{\| \|}$: this extends results by Godefroy, Contreras-Payá and *solve* a problem asked by Plichko.
- We apply the techniques developed to give new characterizations of Asplund spaces.
- We prove that Fonf-Lindenstrauss techniques can be reduced to the *old techniques* coming from Simons inequality: there are no new techniques nor can be stronger applications derived from Fonf-Lindenstrauss.

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
000	0	○●000	00
Our results			

- **()** We prove that when *B* is "descriptive" then $K = \overline{\operatorname{co} B}^{\|\|}$: this extends results by Godefroy, Contreras-Payá and *solve* a problem asked by Plichko.
- We apply the techniques developed to give new characterizations of Asplund spaces.
- We prove that Fonf-Lindenstrauss techniques can be reduced to the *old techniques* coming from Simons inequality: there are no new techniques nor can be stronger applications derived from Fonf-Lindenstrauss.
- We characterize Banach spaces X without copies of l¹ via boundaries extending the results by Godefroy for the separable case.

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
	0	○●000	00
Our results			

- **(**) We prove that when *B* is "descriptive" then $K = \overline{\operatorname{co} B}^{\| \|}$: this extends results by Godefroy, Contreras-Payá and *solve* a problem asked by Plichko.
- We apply the techniques developed to give new characterizations of Asplund spaces.
- We prove that Fonf-Lindenstrauss techniques can be reduced to the *old techniques* coming from Simons inequality: there are no new techniques nor can be stronger applications derived from Fonf-Lindenstrauss.
- We characterize Banach spaces X without copies of l¹ via boundaries extending the results by Godefroy for the separable case.
- So For Asplund spaces we characterize boundaries for which K = co B^{||||}. We extend in several different ways results by Namioka and Fonf.

Proposition, Muñoz-Orihuela-B.C.

Let X be a Banach space, B a boundary for B_{X^*} , $1 > \varepsilon \ge 0$ and $T \subset X^*$ such that $B \subset \bigcup_{t \in T} B(t, \varepsilon)$. If (T, w) is countably K-determined (resp. K-analytic) then:

(i) $X^* = \overline{\text{span } T}^{\parallel \parallel}$ and X^* is weakly countably *K*-determined (resp. weakly *K*-analytic).

(ii) Every boundary for B_{X^*} is strong. In particular $B_{X^*} = \overline{\operatorname{co}(B)}^{\parallel \parallel}$.

Proposition, Muñoz-Orihuela-B.C.

Let X be a Banach space, B a boundary for B_{X^*} , $1 > \varepsilon \ge 0$ and $T \subset X^*$ such that $B \subset \bigcup_{t \in T} B(t, \varepsilon)$. If (T, w) is countably K-determined (resp. K-analytic) then:

(i) $X^* = \overline{\text{span } T}^{\parallel \parallel}$ and X^* is weakly countably *K*-determined (resp. weakly *K*-analytic).

(ii) Every boundary for
$$B_{X^*}$$
 is strong. In particular $B_{X^*} = \overline{\operatorname{co}(B)}^{\parallel \parallel}$.

This answers a question by Plichko, extends Godefroy's result for separable boundary and improves Contreras-Payá and Fonf-Lindenstrauss result.

2 problems about bound 000	aries The Boundary prol O	olem Our new r	esults Op oc	pen problems+References
2nd result:	characterizatior	n of Asplund	spaces v	via selectors

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X:

- (i) X is an Asplund space;
- (ii) J has a Baire one selector;
- (iii) J has a σ -fragmented selector;
- (iv) for some $0 < \varepsilon < 1$, J has an ε -selector that sends norm separable subsets of X into norm separable subsets of X*.
- (v) there exists $0 < \varepsilon < 1$ such that (B_{X^*}, w^*) is ε -fragmented, *i.e.*, for every non-empty subset $C \subset B_{X^*}$ there exists some w*-open set V in B_{X^*} such that $C \cap V \neq \emptyset$ and $\| \| \operatorname{diam}(C \cap V) < \varepsilon$.

2	problems	about	boundaries	

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X:

- (i) X is an Asplund space;
- (ii) J has a Baire one selector;
- (iii) J has a σ -fragmented selector;
- (iv) for some $0 < \varepsilon < 1$, J has an ε -selector that sends norm separable subsets of X into norm separable subsets of X^* .
- (v) there exists $0 < \varepsilon < 1$ such that (B_{X^*}, w^*) is ε -fragmented, *i.e.*, for every non-empty subset $C \subset B_{X^*}$ there exists some w*-open set V in B_{X^*} such that $C \cap V \neq \emptyset$ and $\| \| \operatorname{diam}(C \cap V) < \varepsilon$.

Duality mapping

If $(X, \| \|)$ is a Banach space the duality mapping $J: X \to 2^{B_{X^*}}$ is defined at each $x \in X$ by

$$J(x) := \{x^* \in B_{X^*} : x^*(x) = ||x||\}.$$

problems	about	boundaries

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X:

- (i) X is an Asplund space;
- (ii) J has a Baire one selector;
- (iii) J has a σ -fragmented selector;
- (iv) for some $0 < \varepsilon < 1$, J has an ε -selector that sends norm separable subsets of X into norm separable subsets of X^* .
- (v) there exists $0 < \varepsilon < 1$ such that (B_{X^*}, w^*) is ε -fragmented, *i.e.*, for every non-empty subset $C \subset B_{X^*}$ there exists some w*-open set V in B_{X^*} such that $C \cap V \neq \emptyset$ and $|| \| \operatorname{diam}(C \cap V) < \varepsilon$.

Notes:

 $\bullet\,$ Borel measurable maps are $\sigma\text{-fragmented}.$

problems	about	boundaries

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X:

- (i) X is an Asplund space;
- (ii) J has a Baire one selector;
- (iii) J has a σ -fragmented selector;
- (iv) for some $0 < \varepsilon < 1$, J has an ε -selector that sends norm separable subsets of X into norm separable subsets of X^* .
- (v) there exists $0 < \varepsilon < 1$ such that (B_{X^*}, w^*) is ε -fragmented, *i.e.*, for every non-empty subset $C \subset B_{X^*}$ there exists some w*-open set V in B_{X^*} such that $C \cap V \neq \emptyset$ and $|| \| \operatorname{diam}(C \cap V) < \varepsilon$.

Notes:

- Borel measurable maps are σ -fragmented.
- The implication (ii)⇒(i) is proved in [JR02] with extra hypothesis which are justified with a wrong example.

problems	about	boundaries

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X:

- (i) X is an Asplund space;
- (ii) J has a Baire one selector;
- (iii) J has a σ -fragmented selector;
- (iv) for some $0 < \varepsilon < 1$, J has an ε -selector that sends norm separable subsets of X into norm separable subsets of X^* .
- (v) there exists $0 < \varepsilon < 1$ such that (B_{X^*}, w^*) is ε -fragmented, *i.e.*, for every non-empty subset $C \subset B_{X^*}$ there exists some w*-open set V in B_{X^*} such that $C \cap V \neq \emptyset$ and $|| \| \operatorname{diam}(C \cap V) < \varepsilon$.

Notes:

- Borel measurable maps are σ-fragmented.
- The implication (ii)⇒(i) is proved in [JR02] with extra hypothesis which are justified with a wrong example.
- The equivalence with (v) is known when we write *for every* ε: a different proof has been given quite recently by Fabian-Montesinos-Zizler.

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
000	O	○○○○●	00
Boundaries and th	he topology γ		

 γ is the topology on X^* of uniform convergence on bounded and countable subsets of X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 problems about boundaries	The Boundary problem 0	Our new results	Open problems+References 00
D I I	1.1.1		

Boundaries and the topology γ

 γ is the topology on X^* of uniform convergence on bounded and countable subsets of X.

Muñoz, Orihuela and B. C.

Let X be a Banach space. The following statement are equivalent:

- (i) $\ell^1 \not\subset X$;
- (ii) for every w*-compact subset K of X* and any boundary B of K we have $\overline{\operatorname{co}(K)}^{w^*} = \overline{\operatorname{co}(B)}^{\gamma}$;

(iii) for every w*-compact subset K of X*, $\overline{\operatorname{co}(K)}^{w^*} = \overline{\operatorname{co}(K)}^{\gamma}$.

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
	0	○○○○●	00
D			

Boundaries and the topology γ

 γ is the topology on X^* of uniform convergence on bounded and countable subsets of X.

Muñoz, Orihuela and B. C.

Let X be a Banach space. The following statement are equivalent:

(i)
$$\ell^1 \not\subset X$$
;

(ii) for every w*-compact subset K of X* and any boundary B of K we have $\overline{\operatorname{co}(K)}^{w^*} = \overline{\operatorname{co}(B)}^{\gamma}$;

(iii) for every w*-compact subset K of X*, $\overline{\operatorname{co}(K)}^{W^*} = \overline{\operatorname{co}(K)}^{\gamma}$.

Fonf, Troyanski, Orihuela and B. C.

Let X be an Asplund space, K a w^{*}-compact convex subset of the dual space X^* and $B \subset K$ a boundary of K. Each one of the condition below implies that $K = \overline{\operatorname{co} B}^{\parallel \parallel}$:

- (i) B is γ -closed.
- (ii) B is w^{*}-K-analytic.

2 problems about boundaries Open problem Our new results Open problems+References oo oo

Boundaries and the topology γ

The techniques now are *topological* techniques developed by Namioka-Orihuela-B. C and Namioka-B. C.

Muñoz, Orihuela and B. C.

Let X be a Banach space. The following statement are equivalent:

(i)
$$\ell^1 \not\subset X$$
;

(ii) for every w*-compact subset K of X* and any boundary B of K we have $\overline{\operatorname{co}(K)}^{w^*} = \overline{\operatorname{co}(B)}^{\gamma}$;

(iii) for every w*-compact subset K of X*, $\overline{\operatorname{co}(K)}^{W^*} = \overline{\operatorname{co}(K)}^{\gamma}$.

Fonf, Troyanski, Orihuela and B. C.

Let X be an Asplund space, K a w^{*}-compact convex subset of the dual space X^* and $B \subset K$ a boundary of K. Each one of the condition below implies that $K = \overline{\operatorname{co} B}^{\parallel \parallel}$:

- (i) B is γ -closed.
- (ii) B is w^{*}-K-analytic.

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
000	O		●0
Two open proble	mc		

- The boundary problem in full generality (Godefroy).
- Output Characterize strong boundaries out of the setting of Asplund spaces.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

2 problems about boundaries	The Boundary problem	Our new results	Open problems+References
	0	00000	⊙●
References			

- G. Godefroy, *Boundaries of a convex set and interpolation sets*, Math. Ann. **277** (1987), no. 2, 173–184. MR 88f:46037
- R. Haydon, Some more characterizations of Banach spaces containing l₁, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 269–276. MR 54 #11031
- J. E. Jayne and C. A. Rogers, *Selectors*, Princeton University Press, Princeton, NJ, 2002. MR MR1915965 (2003j:54018)
- I. Namioka, *Radon-Nikodým compact spaces and fragmentability*, Mathematika **34** (1987), no. 2, 258–281. MR 89i:46021