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2 problems about boundaries The Boundary problem Our new results Open problems+References

Boundaries: definitions

Throughout the lecture. . .

X is a Banach space equipped with its norm ‖ ‖;
K is a Hausdorff compact and C(K) is equipped with its supremum norm.

A subset B ⊂ BX ∗= {x∗ ∈ X ∗ ; ‖ x∗ ‖≤ 1} is a boundary for
BX ∗ if for any x ∈ X , there is x∗ ∈ B such that x∗(x) =‖ x ‖ .

A simple example of boundary is provided by Ext (BX ∗) the
set of extreme points of BX ∗ .

e1e2
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Two problems regarding boundaries

Problem 1: The boundary problem (Godefroy)...extremal test

Let X Banach space, B ⊂ BX ∗ boundary and denote by τp(B) the
topology defined on X by the pointwise convergence on B. Let H
be a norm bounded and τp(B)-compact subset of X .

Is H weakly compact?

Problem 2: When is a boundary strong?

Let X Banach space, B ⊂ BX ∗ boundary.

When do we have BX ∗ = coB
‖ ‖

?
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Two problems regarding boundaries

Let X Banach space, B ⊂ BX ∗ boundary and H ⊂ X norm bounded.

Is H weakly compact?

1 1952, Grothendieck: X = C(K) and
B = Ext(BC(K)∗);

2 1963, Rainwater: B = Ext(BX ∗), H
τp(B)-seq.compact;

3 1972, James: BX ⊂ BX ∗∗ boundary;

4 1972, Simons: H τp(B)-seq.compact
and B arbitrary;

5 1974, de Wilde: H convex and B
arbitrary;

6 1982, Bourgain-Talagrand:
B = Ext(BX ∗), arbitrary H.

BX ∗ = coB
‖ ‖

?

1 1976, Haydon, YES: `1 6⊂ X and
B = ExtBX ∗

2 1981, Rodé, YES: B countable;

3 1987, Namioka, YES: localized version
using fragmentability.

4 1987, Godefroy YES: if B is norm
separable.

5 1987, Godefroy YES: if X is separable
and `1 6⊂ X .

6 1999, Fonf YES: X separ.polyhedral.

7 2003, Fonf-Lindenstrauss: alternative
proofs.Right =⇒ Left. Left is open in full generality. Right isn’t always true.
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Boundary problem for C (K )
G. Godefroy and B. C., 1998

Let K be a compact space and B ⊂ BC(K)∗ a boundary. Then a subset H of C(K) is weakly compact if, and only

if, it is norm bounded and τp(B)-compact.

G. Manjabacas, G. Vera and B. C. 1997; R. Shvydkoy and B. C. 2003

Let X be a Banach space such that `1(c) 6⊂ X and B any boundary for BX∗ . Then a subset H of X is weakly
compact if, and only if, it is norm bounded and τp(B)-compact.
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Strong boundaries

Definition

Given a Banach space X and a w∗-compact subset K ⊂ X ∗, a James boundary
for K is a subset B of K such that for every x ∈ X there exists some b ∈ B

such that b(x) = sup{k(x) : k ∈ K}.

If K is convex then K = coB
w∗

.

The question?

K is convex, B ⊂ K boundary, study conditions (X , B or K?) leading to

K = coB
‖ ‖

.

What are the techniques that have been used?

1 1976, Haydon [Hay76]: `1 6⊂ X and B = ExtK uses independent

sequences (Ramsey theory) K = coExtK
‖ ‖

.

2 1987, Namioka [Nam87]: K ⊂ X ∗ is norm fragmented, then

coK
w∗

= coK
‖ ‖

, uses the existence of barycenters.

3 1987, Godefroy [God87]: if B ⊂ K is norm separable then K = coB
‖ ‖

uses Simons inequality.

4 1987, Godefroy [God87] using Simons inequality proves that if X is

separable and `1 6⊂ X then K = coB
‖ ‖

.
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Our results

1 We prove that when B is “descriptive” then K = coB
‖ ‖

: this extends
results by Godefroy, Contreras-Payá and solve a problem asked by Plichko.

2 We apply the techniques developed to give new characterizations of
Asplund spaces.

3 We prove that Fonf-Lindenstrauss techniques can be reduced to the old
techniques coming from Simons inequality: there are no new techniques
nor can be stronger applications derived from Fonf-Lindenstrauss.

4 We characterize Banach spaces X without copies of `1 via boundaries
extending the results by Godefroy for the separable case.

5 For Asplund spaces we characterize boundaries for which K = coB
‖ ‖

.
We extend in several different ways results by Namioka and Fonf.
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Our first result: answer to a question by Plichko

Proposition, Muñoz-Orihuela-B.C.

Let X be a Banach space, B a boundary for BX ∗ , 1 > ε ≥ 0 and
T ⊂ X ∗ such that B ⊂

⋃
t∈T B(t,ε). If (T ,w) is countably

K -determined (resp. K -analytic) then:

(i) X ∗ = spanT
‖ ‖

and X ∗ is weakly countably K -determined
(resp. weakly K -analytic).

(ii) Every boundary for BX ∗ is strong. In particular

BX ∗ = co(B)
‖ ‖

.

This answers a question by Plichko, extends Godefroy’s result for
separable boundary and improves Contreras-Payá and
Fonf-Lindenstrauss result.
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Proposition, Muñoz-Orihuela-B.C.

Let X be a Banach space, B a boundary for BX ∗ , 1 > ε ≥ 0 and
T ⊂ X ∗ such that B ⊂

⋃
t∈T B(t,ε). If (T ,w) is countably

K -determined (resp. K -analytic) then:

(i) X ∗ = spanT
‖ ‖

and X ∗ is weakly countably K -determined
(resp. weakly K -analytic).

(ii) Every boundary for BX ∗ is strong. In particular

BX ∗ = co(B)
‖ ‖

.

This answers a question by Plichko, extends Godefroy’s result for
separable boundary and improves Contreras-Payá and
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2nd result: characterization of Asplund spaces via selectors

Muñoz-Orihuela-B.C.

The following conditions are equivalent for a Banach space X :

(i) X is an Asplund space;

(ii) J has a Baire one selector;

(iii) J has a σ -fragmented selector;

(iv) for some 0 < ε < 1, J has an ε-selector that sends norm separable subsets
of X into norm separable subsets of X ∗.

(v) there exists 0 < ε < 1 such that (BX ∗ ,w
∗) is ε-fragmented, i.e., for every

non-empty subset C ⊂ BX ∗ there exists some w∗-open set V in BX ∗ such
that C ∩V 6= /0 and ‖ ‖−diam(C ∩V ) < ε.



2 problems about boundaries The Boundary problem Our new results Open problems+References

2nd result: characterization of Asplund spaces via selectors
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non-empty subset C ⊂ BX ∗ there exists some w∗-open set V in BX ∗ such
that C ∩V 6= /0 and ‖ ‖−diam(C ∩V ) < ε.

Duality mapping

If (X ,‖ ‖) is a Banach space the duality mapping J : X → 2BX∗ is defined at
each x ∈ X by

J(x) := {x∗ ∈ BX ∗ : x∗(x) = ‖x‖}.
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non-empty subset C ⊂ BX ∗ there exists some w∗-open set V in BX ∗ such
that C ∩V 6= /0 and ‖ ‖−diam(C ∩V ) < ε.

Notes:

Borel measurable maps are σ -fragmented.

The implication (ii)⇒(i) is proved in [JR02] with extra hypothesis which
are justified with a wrong example.

The equivalence with (v) is known when we write for every ε: a different
proof has been given quite recently by Fabian-Montesinos-Zizler.
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Boundaries and the topology γ

γ is the topology on X ∗ of uniform convergence on bounded and countable
subsets of X .

Muñoz, Orihuela and B. C.

Let X be a Banach space. The following statement are equivalent:

(i) `1 6⊂ X ;

(ii) for every w∗-compact subset K of X ∗ and any boundary B of K we have

co(K)
w∗

= co(B)
γ
;

(iii) for every w∗-compact subset K of X ∗, co(K)
w∗

= co(K)
γ
.

Fonf, Troyanski, Orihuela and B. C.

Let X be an Asplund space, K a w∗−compact convex subset of the dual space
X ∗ and B ⊂ K a boundary of K . Each one of the condition below implies that

K = coB
‖ ‖

:

(i) B is γ-closed.

(ii) B is w∗-K -analytic.

The techniques now are topological techniques developed by
Namioka-Orihuela-B. C and Namioka-B. C.
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Two open problems

1 The boundary problem in full generality (Godefroy).

2 Characterize strong boundaries out of the setting of Asplund
spaces.
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